

Reg. No. :								
------------	--	--	--	--	--	--	--	--

Question Paper Code: 90338

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2019
Third Semester
Civil Engineering

MA 8353 – TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
(Common to Aeronautical Engineering/Aerospace Engineering/Agriculture
Engineering/Automobile Engineering/Electrical and Electronics Engineering/
Electronics and Instrumentation Engineering/Industrial Engineering/Industrial
Engineering and Management/Instrumentation and Control Engineering/
Manufacturing Engineering/Marine Engineering/Material Science and
Engineering/Mechanical Engineering/Mechanical Engineering (Sandwich)/
Mechanical and Automation Engineering/Mechatronics Engineering/Production
Engineering/Robotics and Automation Engineering/Bio Technology/Chemical and
Electrochemical Engineering/Food Technology/Pharmaceutical Technology)
(Regulations 2017)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. Find the complete solution of p = 2qx.
- 2. Solve $(D^2 6DD' + 9D'^2) z = 0$.
- 3. State the Dirichlet's conditions.
- 4. Sketch the even extension of the function $f(x) = \sin x$, $0 < x < \pi$.
- 5. Classify the two-dimensional steady state heat conduction equation.
- 6. Give the mathematical formulation of the problem of one-dimensional heat conduction in a rod of length l with insulated ends and with initial temperature f(x).
- 7. State the convolution theorem for Fourier Transforms.

(8)

- 8. Show that $\Im_c[f(x)\cos ax] = \frac{1}{2}\{F_c(s+a) + F_c(s-a)\}$ where $\Im_c[f(x)] = F_c(s)$ is the Fourier cosine transform of f(x).
- 9. Show that $Z[a^n f(n)] = F(\frac{z}{a})$ where Z[f(n)] = F(z) is the Z-transform of f(x).
- 10. State the initial and final value theorems of Z-transforms.

PART – B (5×16=80 Marks)

- 11. a) i) Solve $(D^3 2D^2 D') z = \sin(x + 2y) + 3x^2 y$. (10)
 - ii) Form the partial differential equation by eliminating the arbitrary functions from u = f(x + ct) + g(x ct). (6)

(OR)

- b) i) Solve $(x^2 yz) p + (y^2 zx) q = (z^2 xy)$. (10)
 - ii) Solve $p x^2 = q + y^2$. (6)
- 12. a) i) Find the Fourier series of $f(x) = x^2$ in (0, 2l). Hence deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}.$ (10)
 - ii) Find the complex form of the Fourier series of $f(x) = \cos ax$ in $(-\pi, \pi)$, where 'a' is neither zero nor an integer. (6)

(OR)

- b) i) Obtain the constant term and the first three harmonics in the Fourier

 Cosine series of y = f (x) in (0, 6) from the following table.

 (10)

 x | 0 | 1 | 2 | 3 | 4 | 5

 y | 4 | 8 | 15 | 7 | 6 | 2
 - ii) Find the Fourier series expansion of $f(x) = \sin ax$ in (-l, l).
- 13. a) i) Solve $u_t = a^2 u_{xx}$ by the method of separation of variables and obtain all possible solutions. (8)
 - ii) A rectangular plate with insulated surfaces is 8 cm wide and so long compared to its width that it may be considered as an infinite plate.

If the temperature along the short edge y = 0 is $u(x, 0) = 100 \sin\left(\frac{\pi x}{8}\right)$, 0 < x < 8 while two long edges x = 0 & x = 8 as well as the other short edge are kept at 0°C, then find the steady state temperature at any point of the plate.

(OR)

- b) i) Solve the problem of a tightly stretched string with fixed end points x = 0 & x = 1 which is initially in the position y = f(x) and which is initially set vibrating by giving to each of its points a velocity $\frac{dy}{dt} = g(x)$ at t = 0. (10)
 - ii) Classify the partial differential equation $(1-x^2) f_{xx} 2xyf_{xy} + (1-y^2) f_{yy} = 0.$ (6)
- 14. a) i) Find the Fourier transform of f(x) where f(x) = $\begin{cases} 1, & |x| < a \\ 0, & |x| > a > 0 \end{cases}$ and hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$. (10)
 - ii) Show that $\frac{1}{\sqrt{x}}$ is self-reciprocal under the Fourier cosine transform. (6)
 - b) i) Find the Fourier cosine and sine transforms of e^{-ax}, a > 0 and hence deduce their inversion formulae. (10)
 - ii) Using Parseval's identity, evaluate $\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)^2} a > 0.$ (6)
- 15. a) i) Find Z $\{\sin bt\}$ and hence find Z $\{e^{-at} \sin bt\}$. (8)
 - ii) Find Z^{-1} $\left\{\frac{8z^2}{(2z-1)(4z+1)}\right\}$ using convolution theorem. (8)
 - b) i) Using Z-transforms, solve the difference equation $y_{n+2} 7y_{n+1} + 12y_n = 2^n$ given $y_0 = y_1 = 0$. Use partial fraction method to find the inverse Z-transform. (8)
 - ii) Using residue method, find $Z^{-1}\left\{\frac{z}{z^2+2z+2}\right\}$. (8)

- 10 Frant X-1 (128-1) (124-15) uring convolution theorems